Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Comput Assist Tomogr ; 47(1): 3-8, 2023.
Article in English | MEDLINE | ID: covidwho-2213012

ABSTRACT

OBJECTIVE: To quantify the association between computed tomography abdomen and pelvis with contrast (CTAP) findings and chest radiograph (CXR) severity score, and the incremental effect of incorporating CTAP findings into predictive models of COVID-19 mortality. METHODS: This retrospective study was performed at a large quaternary care medical center. All adult patients who presented to our institution between March and June 2020 with the diagnosis of COVID-19 and had a CXR up to 48 hours before a CTAP were included. Primary outcomes were the severity of lung disease before CTAP and mortality within 14 and 30 days. Logistic regression models were constructed to quantify the association between CXR score and CTAP findings. Penalized logistic regression models and random forests were constructed to identify key predictors (demographics, CTAP findings, and CXR score) of mortality. The discriminatory performance of these models, with and without CTAP findings, was summarized using area under the characteristic (AUC) curves. RESULTS: One hundred ninety-five patients (median age, 63 years; 119 men) were included. The odds of having CTAP findings was 3.89 times greater when a CXR score was classified as severe compared with mild (P = 0.002). When CTAP findings were included in the feature set, the AUCs for 14-day mortality were 0.67 (penalized logistic regression) and 0.71 (random forests). Similar values for 30-day mortality were 0.76 and 0.75. When CTAP findings were omitted, all AUC values were attenuated. CONCLUSIONS: The CTAP findings were associated with more severe CXR score and may serve as predictors of COVID-19 mortality.


Subject(s)
COVID-19 , Adult , Male , Humans , Middle Aged , Retrospective Studies , Abdomen , Tomography , Radiography, Thoracic
2.
Medicine (Baltimore) ; 101(29): e29587, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1961224

ABSTRACT

To tune and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from 4 test sets, including 3 from the United States (patients hospitalized at an academic medical center (N = 154), patients hospitalized at a community hospital (N = 113), and outpatients (N = 108)) and 1 from Brazil (patients at an academic medical center emergency department (N = 303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson R). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. Tuning the deep learning model with outpatient data showed high model performance in 2 United States hospitalized patient datasets (R = 0.88 and R = 0.90, compared to baseline R = 0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (R = 0.86 and R = 0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. A deep learning model that extracts a COVID-19 severity score on CXRs showed generalizable performance across multiple populations from 2 continents, including outpatients and hospitalized patients.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Lung , Radiography, Thoracic/methods , Radiologists
3.
Clin Imaging ; 86: 83-88, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803771

ABSTRACT

PURPOSE: To assess radiology representation, multimedia content, and multilingual content of United States lung cancer screening (LCS) program websites. MATERIALS AND METHODS: We identified the websites of US LCS programs with the Google internet search engine using the search terms lung cancer screening, low-dose CT screening, and lung screening. We used a standardized checklist to assess and collect specific content, including information regarding LCS staff composition and references to radiologists and radiology. We also tabulated types and frequencies of included multimedia and multilingual content and patient narratives. RESULTS: We analyzed 257 unique websites. Of these, only 48% (124 of 257) referred to radiologists or radiology in text, images, or videos. Radiologists were featured in images or videos on only 14% (36 of 257) of websites. Radiologists were most frequently acknowledged for their roles in reading or interpreting imaging studies (35% [90 of 574]). Regarding multimedia content, only 36% (92 of 257) of websites had 1 image, 27% (70 of 257) included 2 or more images, and 26% (68 of 257) of websites included one or more videos. Only 3% (7 of 257) of websites included information in a language other than English. Patient narratives were found on only 15% (39 of 257) of websites. CONCLUSIONS: The field of Radiology is mentioned in text, images, or videos by less than half of LCS program websites. Most websites make only minimal use of multimedia content such as images, videos, and patient narratives. Few websites provide LCS information in languages other than English, potentially limiting accessibility to diverse populations.


Subject(s)
Lung Neoplasms , Radiology , Early Detection of Cancer , Humans , Internet , Lung Neoplasms/diagnostic imaging , Multimedia , Search Engine , United States
4.
AJR Am J Roentgenol ; 217(5): 1093-1102, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1484970

ABSTRACT

BACKGROUND. Previous studies compared CT findings of COVID-19 pneumonia with those of other infections; however, to our knowledge, no studies to date have included noninfectious organizing pneumonia (OP) for comparison. OBJECTIVE. The objectives of this study were to compare chest CT features of COVID-19, influenza, and OP using a multireader design and to assess the performance of radiologists in distinguishing between these conditions. METHODS. This retrospective study included 150 chest CT examinations in 150 patients (mean [± SD] age, 58 ± 16 years) with a diagnosis of COVID-19, influenza, or non-infectious OP (50 randomly selected abnormal CT examinations per diagnosis). Six thoracic radiologists independently assessed CT examinations for 14 individual CT findings and for Radiological Society of North America (RSNA) COVID-19 category and recorded a favored diagnosis. The CT characteristics of the three diagnoses were compared using random-effects models; the diagnostic performance of the readers was assessed. RESULTS. COVID-19 pneumonia was significantly different (p < .05) from influenza pneumonia for seven of 14 chest CT findings, although it was different (p < .05) from OP for four of 14 findings (central or diffuse distribution was seen in 10% and 7% of COVID-19 cases, respectively, vs 20% and 21% of OP cases, respectively; unilateral distribution was seen in 1% of COVID-19 cases vs 7% of OP cases; non-tree-in-bud nodules was seen in 32% of COVID-19 cases vs 53% of OP cases; tree-in-bud nodules were seen in 6% of COVID-19 cases vs 14% of OP cases). A total of 70% of cases of COVID-19, 33% of influenza cases, and 47% of OP cases had typical findings according to RSNA COVID-19 category assessment (p < .001). The mean percentage of correct favored diagnoses compared with actual diagnoses was 44% for COVID-19, 29% for influenza, and 39% for OP. The mean diagnostic accuracy of favored diagnoses was 70% for COVID-19 pneumonia and 68% for both influenza and OP. CONCLUSION. CT findings of COVID-19 substantially overlap with those of influenza and, to a greater extent, those of OP. The diagnostic accuracy of the radiologists was low in a study sample that contained equal proportions of these three types of pneumonia. CLINICAL IMPACT. Recognized challenges in diagnosing COVID-19 by CT are furthered by the strong overlap observed between the appearances of COVID-19 and OP on CT. This challenge may be particularly evident in clinical settings in which there are substantial proportions of patients with potential causes of OP such as ongoing cancer therapy or autoimmune conditions.


Subject(s)
COVID-19/diagnostic imaging , Cryptogenic Organizing Pneumonia/diagnostic imaging , Influenza, Human/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed , Diagnosis, Differential , Female , Humans , Influenza, Human/virology , Male , Massachusetts , Middle Aged , Observer Variation , Pneumonia, Viral/virology , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2
5.
Radiol Cardiothorac Imaging ; 2(3): e200277, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1243730

ABSTRACT

PURPOSE: To investigate pulmonary vascular abnormalities at CT pulmonary angiography (CT-PE) in patients with coronavirus disease 2019 (COVID-19) pneumonia. MATERIALS AND METHODS: In this retrospective study, 48 patients with reverse-transcription polymerase chain reaction-confirmed COVID-19 infection who had undergone CT-PE between March 23 and April 6, 2020, in a large urban health care system were included. Patient demographics and clinical data were collected through the electronic medical record system. Twenty-five patients underwent dual-energy CT (DECT) as part of the standard CT-PE protocol at a subset of the hospitals. Two thoracic radiologists independently assessed all studies. Disagreement in assessment was resolved by consensus discussion with a third thoracic radiologist. RESULTS: Of the 48 patients, 45 patients required admission, with 18 admitted to the intensive care unit, and 13 requiring intubation. Seven patients (15%) were found to have pulmonary emboli. Dilated vessels were seen in 41 cases (85%), with 38 (78%) and 27 (55%) cases demonstrating vessel enlargement within and outside of lung opacities, respectively. Dilated distal vessels extending to the pleura and fissures were seen in 40 cases (82%) and 30 cases (61%), respectively. At DECT, mosaic perfusion pattern was observed in 24 cases (96%), regional hyperemia overlapping with areas of pulmonary opacities or immediately surrounding the opacities were seen in 13 cases (52%), opacities associated with corresponding oligemia were seen in 24 cases (96%), and hyperemic halo was seen in 9 cases (36%). CONCLUSION: Pulmonary vascular abnormalities such as vessel enlargement and regional mosaic perfusion patterns are common in COVID-19 pneumonia. Perfusion abnormalities are also frequently observed at DECT in COVID-19 pneumonia and may suggest an underlying vascular process.Supplemental material is available for this article.© RSNA, 2020.

6.
Radiol Cardiothorac Imaging ; 2(5): e200276, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1155994

ABSTRACT

BACKGROUND: RSNA expert consensus guidelines provide a framework for reporting CT findings related to COVID-19, but have had limited multireader validation. PURPOSE: To assess the performance of the RSNA guidelines and quantify interobserver variability in application of the guidelines in patients undergoing chest CT for suspected COVID-19 pneumonia. MATERIALS AND METHODS: A retrospective search from 1/15/20 to 3/30/20 identified 89 consecutive CT scans whose radiological report mentioned COVID-19. One positive or two negative RT-PCR tests for COVID-19 were considered the gold standard for diagnosis. Each chest CT scan was evaluated using RSNA guidelines by 9 readers (6 fellowship trained thoracic radiologists and 3 radiology resident trainees). Clinical information was obtained from the electronic medical record. RESULTS: There was strong concordance of findings between radiology training levels with agreement ranging from 60 to 86% among attendings and trainees (kappa 0.43 to 0.86). Sensitivity and specificity of "typical" CT findings for COVID-19 per the RSNA guidelines were on average 86% (range 72%-94%) and 80.2% (range 75-93%), respectively. Combined "typical" and "indeterminate" findings had a sensitivity of 97.5% (range 94-100%) and specificity of 54.7% (range 37-62%). A total of 163 disagreements were seen out of 801 observations (79.6% total agreement). Uncertainty in classification primarily derived from difficulty in ascertaining peripheral distribution, multiple dominant disease processes, or minimal disease. CONCLUSION: The "typical appearance" category for COVID-19 CT reporting has an average sensitivity of 86% and specificity rate of 80%. There is reasonable interreader agreement and good reproducibility across various levels of experience.

7.
J Am Coll Radiol ; 18(6): 843-852, 2021 06.
Article in English | MEDLINE | ID: covidwho-1131426

ABSTRACT

Reports are rising of patients with unilateral axillary lymphadenopathy, visible on diverse imaging examinations, after recent coronavirus disease 2019 vaccination. With less than 10% of the US population fully vaccinated, we can prepare now for informed care of patients imaged after recent vaccination. The authors recommend documenting vaccination information (date[s] of vaccination[s], injection site [left or right, arm or thigh], type of vaccine) on intake forms and having this information available to the radiologist at the time of examination interpretation. These recommendations are based on three key factors: the timing and location of the vaccine injection, clinical context, and imaging findings. The authors report isolated unilateral axillary lymphadenopathy (i.e., no imaging findings outside of visible lymphadenopathy), which is ipsilateral to recent (prior 6 weeks) vaccination, as benign with no further imaging indicated. Clinical management is recommended, with ultrasound if clinical concern persists 6 weeks after the final vaccination dose. In the clinical setting to stage a recent cancer diagnosis or assess response to therapy, the authors encourage prompt recommended imaging and vaccination (possibly in the thigh or contralateral arm according to the location of the known cancer). Management in this clinical context of a current cancer diagnosis is tailored to the specific case, ideally with consultation between the oncology treatment team and the radiologist. The aim of these recommendations is to (1) reduce patient anxiety, provider burden, and costs of unnecessary evaluation of enlarged nodes in the setting of recent vaccination and (2) avoid further delays in vaccinations and recommended imaging for best patient care during the pandemic.


Subject(s)
COVID-19 , Lymphadenopathy , COVID-19 Vaccines , Humans , Lymphadenopathy/diagnostic imaging , Radiologists , SARS-CoV-2 , Vaccination
8.
Acad Radiol ; 28(4): 572-576, 2021 04.
Article in English | MEDLINE | ID: covidwho-1032325

ABSTRACT

RATIONALE AND OBJECTIVES: Radiographic findings of COVID-19 pneumonia can be used for patient risk stratification; however, radiologist reporting of disease severity is inconsistent on chest radiographs (CXRs). We aimed to see if an artificial intelligence (AI) system could help improve radiologist interrater agreement. MATERIALS AND METHODS: We performed a retrospective multi-radiologist user study to evaluate the impact of an AI system, the PXS score model, on the grading of categorical COVID-19 lung disease severity on 154 chest radiographs into four ordinal grades (normal/minimal, mild, moderate, and severe). Four radiologists (two thoracic and two emergency radiologists) independently interpreted 154 CXRs from 154 unique patients with COVID-19 hospitalized at a large academic center, before and after using the AI system (median washout time interval was 16 days). Three different thoracic radiologists assessed the same 154 CXRs using an updated version of the AI system trained on more imaging data. Radiologist interrater agreement was evaluated using Cohen and Fleiss kappa where appropriate. The lung disease severity categories were associated with clinical outcomes using a previously published outcomes dataset using Fisher's exact test and Chi-square test for trend. RESULTS: Use of the AI system improved radiologist interrater agreement (Fleiss κ = 0.40 to 0.66, before and after use of the system). The Fleiss κ for three radiologists using the updated AI system was 0.74. Severity categories were significantly associated with subsequent intubation or death within 3 days. CONCLUSION: An AI system used at the time of CXR study interpretation can improve the interrater agreement of radiologists.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Lung , Radiography, Thoracic , Radiologists , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
9.
Radiology ; 297(3): E303-E312, 2020 12.
Article in English | MEDLINE | ID: covidwho-967323

ABSTRACT

Background Disease severity on chest radiographs has been associated with higher risk of disease progression and adverse outcomes from coronavirus disease 2019 (COVID-19). Few studies have evaluated COVID-19-related racial and/or ethnic disparities in radiology. Purpose To evaluate whether non-White minority patients hospitalized with confirmed COVID-19 infection presented with increased severity on admission chest radiographs compared with White or non-Hispanic patients. Materials and Methods This single-institution retrospective cohort study was approved by the institutional review board. Patients hospitalized with confirmed COVID-19 infection between March 17, 2020, and April 10, 2020, were identified by using the electronic medical record (n = 326; mean age, 59 years ±17 [standard deviation]; male-to-female ratio: 188:138). The primary outcome was the severity of lung disease on admission chest radiographs, measured by using the modified Radiographic Assessment of Lung Edema (mRALE) score. The secondary outcome was a composite adverse clinical outcome of intubation, intensive care unit admission, or death. The primary exposure was the racial and/or ethnic category: White or non-Hispanic versus non-White (ie, Hispanic, Black, Asian, or other). Multivariable linear regression analyses were performed to evaluate the association between mRALE scores and race and/or ethnicity. Results Non-White patients had significantly higher mRALE scores (median score, 6.1; 95% confidence interval [CI]: 5.4, 6.7) compared with White or non-Hispanic patients (median score, 4.2; 95% CI: 3.6, 4.9) (unadjusted average difference, 1.8; 95% CI: 0.9, 2.8; P < .01). For both White (adjusted hazard ratio, 1.3; 95% CI: 1.2, 1.4; P < .001) and non-White (adjusted hazard ratio, 1.2; 95% CI: 1.1, 1.3; P < .001) patients, increasing mRALE scores were associated with a higher likelihood of experiencing composite adverse outcome with no evidence of interaction (P = .16). Multivariable linear regression analyses demonstrated that non-White patients presented with higher mRALE scores at admission chest radiography compared with White or non-Hispanic patients (adjusted average difference, 1.6; 95% CI: 0.5, 2.7; P < .01). Adjustment for hypothesized mediators revealed that the association between race and/or ethnicity and mRALE scores was mediated by limited English proficiency (P < .01). Conclusion Non-White patients hospitalized with coronavirus disease 2019 infection were more likely to have a higher severity of disease on admission chest radiographs than White or non-Hispanic patients, and increased severity was associated with worse outcomes for all patients. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Ethnicity/statistics & numerical data , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Racial Groups/statistics & numerical data , Radiography, Thoracic/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Radiography , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
10.
medRxiv ; 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-808139

ABSTRACT

PURPOSE: To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. MATERIALS AND METHODS: A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. RESULTS: Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. CONCLUSIONS: Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.

11.
Radiol Artif Intell ; 2(4): e200079, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-731126

ABSTRACT

PURPOSE: To develop an automated measure of COVID-19 pulmonary disease severity on chest radiographs (CXRs), for longitudinal disease tracking and outcome prediction. MATERIALS AND METHODS: A convolutional Siamese neural network-based algorithm was trained to output a measure of pulmonary disease severity on CXRs (pulmonary x-ray severity (PXS) score), using weakly-supervised pretraining on ∼160,000 anterior-posterior images from CheXpert and transfer learning on 314 frontal CXRs from COVID-19 patients. The algorithm was evaluated on internal and external test sets from different hospitals (154 and 113 CXRs respectively). PXS scores were correlated with radiographic severity scores independently assigned by two thoracic radiologists and one in-training radiologist (Pearson r). For 92 internal test set patients with follow-up CXRs, PXS score change was compared to radiologist assessments of change (Spearman ρ). The association between PXS score and subsequent intubation or death was assessed. Bootstrap 95% confidence intervals (CI) were calculated. RESULTS: PXS scores correlated with radiographic pulmonary disease severity scores assigned to CXRs in the internal and external test sets (r=0.86 (95%CI 0.80-0.90) and r=0.86 (95%CI 0.79-0.90) respectively). The direction of change in PXS score in follow-up CXRs agreed with radiologist assessment (ρ=0.74 (95%CI 0.63-0.81)). In patients not intubated on the admission CXR, the PXS score predicted subsequent intubation or death within three days of hospital admission (area under the receiver operating characteristic curve=0.80 (95%CI 0.75-0.85)). CONCLUSION: A Siamese neural network-based severity score automatically measures radiographic COVID-19 pulmonary disease severity, which can be used to track disease change and predict subsequent intubation or death.

12.
Acad Radiol ; 27(10): 1353-1362, 2020 10.
Article in English | MEDLINE | ID: covidwho-713681

ABSTRACT

RATIONALE AND OBJECTIVES: While affiliated imaging centers play an important role in healthcare systems, little is known of how their operations are impacted by the COVID-19 pandemic. Our goal was to investigate imaging volume trends during the pandemic at our large academic hospital compared to the affiliated imaging centers. MATERIALS AND METHODS: This was a descriptive retrospective study of imaging volume from an academic hospital (main hospital campus) and its affiliated imaging centers from January 1 through May 21, 2020. Imaging volume assessment was separated into prestate of emergency (SOE) period (before SOE in Massachusetts on March 10, 2020), "post-SOE" period (time after "nonessential" services closure on March 24, 2020), and "transition" period (between pre-SOE and post-SOE). RESULTS: Imaging volume began to decrease on March 11, 2020, after hospital policy to delay nonessential studies. The average weekly imaging volume during the post-SOE period declined by 54% at the main hospital campus and 64% at the affiliated imaging centers. The rate of imaging volume recovery was slower for affiliated imaging centers (slope = 6.95 for weekdays) compared to main hospital campus (slope = 7.18 for weekdays). CT, radiography, and ultrasound exhibited the lowest volume loss, with weekly volume decrease of 41%, 49%, and 53%, respectively, at the main hospital campus, and 43%, 61%, and 60%, respectively, at affiliated imaging centers. Mammography had the greatest volume loss of 92% at both the main hospital campus and affiliated imaging centers. CONCLUSION: Affiliated imaging center volume decreased to a greater degree than the main hospital campus and showed a slower rate of recovery. Furthermore, the trend in imaging volume and recovery were temporally related to public health announcements and COVID-19 cases.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Hospitals , Humans , Massachusetts , Retrospective Studies , SARS-CoV-2 , Urban Health Services
13.
J Thorac Imaging ; 35(6): 346-353, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-607344

ABSTRACT

PURPOSE: The purpose of this article was to report the utility of computed tomography (CT) for detecting unsuspected cases of Coronavirus disease 2019 (COVID-19) and the utility of the Radiological Society of North America (RSNA)/Society of Thoracic Radiology (STR)/American College of Radiology (ACR) consensus guidelines for COVID-19 reporting. MATERIALS AND METHODS: A total of 22 patients of the 156 reverse transcriptase polymerase chain reaction confirmed COVID-19 patients who were hospitalized between March 27, 2020 and March 31, 2020 at our quaternary care academic medical center and who underwent CT imaging within 1 week of admission were included in this retrospective study. Demographics and clinical data were extracted from the electronic medical record system. Two thoracic radiologists independently categorized each CT study on the basis of RSNA/STR/ACR consensus guidelines. Disagreement in categorization was resolved by consensus discussion with a third thoracic radiologist. RESULTS: At the time of imaging, 16 patients (73%) were suspected of COVID-19, and 6 patients (27%) were not. Common symptoms at presentation were fever (73%), cough (77%), and gastrointestinal symptoms (59%). An overall 63% of suspected COVID-19 patients exhibited shortness of breath, whereas 0 unsuspected COVID-19 patients did (P=0.02). On the basis of the RSNA consensus guidelines, 68%, 18%, 9%, and 5% of studies were categorized as "typical appearance," "indeterminate appearance," "atypical appearance," and "negative for pneumonia," respectively. There was no difference of category distribution between suspected and unsuspected COVID-19 patients (P=0.20), with "typical appearance" being the most prevalent in both (69% vs. 67%, respectively). CONCLUSIONS: It is important to recognize imaging features of COVID-19 pneumonia even in unsuspected patients. Implementation of the RSNA/STR/ACR consensus guidelines may increase consistency of reporting and convey the level of suspicion for COVID-19 to other health care providers, with "typical appearance" especially warranting further attention.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Humans , Middle Aged , North America , Radiologists , Retrospective Studies , SARS-CoV-2 , Societies, Medical
SELECTION OF CITATIONS
SEARCH DETAIL